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Trait-like differences in cognitive performance after sleep loss put
some individuals more at risk than others, the basis of such
disparities remaining largely unknown. Similarly, interindividual
differences in impairment in response to alcohol intake have been
observed. We tested whether performance impairments due to
either acute or chronic sleep loss can be predicted by an individual’s
vulnerability to acute alcohol intake. Also, we used positron emis-
sion tomography (PET) to test whether acute alcohol infusion results
in an up-regulation of cerebral A1 adenosine receptors (A1ARs), sim-
ilar to the changes previously observed following sleep deprivation.
Sustained attention in the psychomotor vigilance task (PVT) was
tested in 49 healthy volunteers (26 ± 5 SD years; 15 females) (i)
under baseline conditions: (ii) after ethanol intake, and after either
(iii) total sleep deprivation (TSD; 35 hours awake; n = 35) or (iv)
partial sleep deprivation (PSD; four nights with 5 hours scheduled
sleep; n = 14). Ethanol- versus placebo-induced changes in cerebral
A1AR availability were measured in 10 healthy male volunteers
(31± 9 years) with [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxan-
thine (CPFPX) PET. Highly significant correlations between the per-
formance impairments induced by ethanol and sleep deprivation
were found for various PVT parameters, including mean speed
(TSD, r = 0.62; PSD, r = 0.84). A1AR availability increased up to
26% in several brain regions with ethanol infusion. Our studies
revealed individual trait characteristics for being either vulnerable
or resilient to both alcohol and to sleep deprivation. Both interven-
tions induce gradual increases in cerebral A1AR availability, pointing
to a potential common molecular response mechanism.
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Fatigue due to sleep loss and extended time awake is a major
cause of accidents and incidents in the modern 24-h society

(1–6). Surveys on sleep habits suggest that ∼40% of the German
population (7) and ∼30% of the US population (2, 8) sleep less
than the recommended 7-h minimum sleep duration (9).
Chronic sleep restriction is associated with increased sleepiness
and cognitive performance impairment (10–13). The extent of
impairment varies greatly among individuals, putting some
more at risk than others (14, 15), whereas the physiological
basis of this variation remains largely unknown. In contrast,
performance varies relatively little across repeated exposures
within an individual, indicating trait-like behavior (16) and a
substantial genetic influence (17). For a comprehensive review
on the interindividual neurobehavioral variation in the re-
sponse to sleep deprivation and its involvement of adenosi-
nergic, dopaminergic, and cholinergic pathways, see Tkachenko
and Dinges (18). Similarly, trait-like differences exist in alcohol
sensitivity and the vulnerability to performance impairment

after alcohol intake (19). Ethanol is a psychoactive drug with
depressant effects on the central nervous system. For example,
alcohol facilitates sleep onset and increases deep sleep in the
first half of the sleep episode, whereas it disrupts sleep in the
second half of the sleep episode (20, 21). It affects multiple
neuroreceptor systems in the brain: It is a positive allosteric
modulator at GABA receptors, agonist at the alpha 7 nicotinic
acetylcholine and serotonin 3 receptors, antagonist at the
NMDA, AMPA, and kainate receptors, and inhibitor of various
ion channels. Moreover, ethanol blocks the reuptake of aden-
osine and increases its formation. Adenosine is a nucleoside
that plays a central role in energy transfer, as it is formed by
breakdown of ATP, the main energy source of cells. In the
brain, adenosine acts as a neuromodulator and cotransmitter
that inhibits the impact of excitatory neurotransmitters like
glutamate. The physiological effect of adenosine is mediated by
four types of receptors, of which the A1 subtype is most wide-
spread in the human brain. The brain’s adenosine system has
emerged as a potential candidate mediating both the sleep-
inducing effects of alcohol as well as the increase in sleep
propensity and sleepiness after sleep loss. The impairment of
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alertness and motor/cognitive performance by alcohol (22) is
attributed to the inhibitory effects of increased adenosine
concentration and to an increase of inhibitory A1 adenosine
receptor (A1AR) availability (23–25). The increase in extra-
cellular adenosine has been reported to inhibit wake-promoting
cholinergic neurons in the basal forebrain, since blocking
the A1AR as well as lesioning of cholinergic neurons in the
basal forebrain resulted in a reduction of the sedative effect of
ethanol (26). Ethanol was found to increase extracellular
adenosine levels up to fourfold in cell culture and in vivo
microdialysis experiments by stimulating its production and by
uptake inhibition (27). Agonists at the A1AR such as cyclo-
hexyladenosine are known to accentuate the effects of ethanol,
whereas A1AR antagonists like caffeine and theophylline at-
tenuate them. Sleep deprivation increases A1AR availability in
the human brain as a function of elapsed time awake (28),
thereby impairing brain functioning.
We hypothesized that (i) the individual performance-degrading

effects of sleep loss and alcohol correlate, that is, that the response
to alcohol predicts individual vulnerability to sleep loss, and that
(ii) ethanol induces a global increase in A1AR availability in the
human brain resembling the effects of sleep loss.
Three studies were conducted to test these hypotheses. First,

47 participants were exposed to alcohol and 38 h of wakefulness
on separate days to compare the impairment of sustained at-
tention on an individual basis. Second, individual impairment
was compared in 16 participants who were exposed to alcohol
and 4 d of partial sleep deprivation (5-h time in bed) on separate
days. Third, cerebral A1AR availability of 10 participants was
measured in vivo using positron emission tomography (PET)
comparing the impact of ethanol versus placebo infusion.

Results
Alcohol intake, total sleep deprivation, and 4 d of sleep re-
striction each resulted in impairment of sustained attention,
measured as the deviation from baseline in a psychomotor vigi-
lance task (PVT) (Fig. 1). Individuals who showed good per-
formance after alcohol intake proved to be more resistant to the
effects of acute and chronic sleep loss, whereas individuals who
showed large impairments after alcohol were more vulnerable to
the two types of sleep deprivation (Fig. 1 A and B). A median
split was performed based on individuals’ performance under the
influence of alcohol. The resulting two groups differed signifi-
cantly in mean speed during total sleep deprivation (TSD) and
partial sleep deprivation (PSD) (Fig. 2). While the resilient
group recovered from sleep loss after one night of sleep, re-
covery remained incomplete in the vulnerable group.
Highly significant Spearman correlations (Fig. 1 C and D and

Table 1) between performance impairments after alcohol intake
and acute or chronic sleep deprivation were found for several PVT
measures. In contrast, the impairment in the examined perfor-
mance parameters under alcohol or sleep deprivation did not de-
pend on an individual’s absolute performance at baseline (i.e., no
significant correlation except for the 10% slowest reaction times
after sleep deprivation; P = 0.048). Moreover, the small differences
in blood alcohol concentration (BAC) levels between subjects did
not predict performance impairment (r < 0.36, P > 0.2).
Using quantitative [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-

propylxanthine (CPFPX) PET, ethanol infusion rapidly increased
A1AR availability in various brain regions, while placebo infu-
sion had no such effect (Figs. 3 and 4A). Comparison between
the posttreatment interval (i.e., 110 to 140 min after tracer in-
fusion) and the baseline interval (50 to 90 min) revealed for the
ethanol group a relative increase in A1AR availability ranging
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Fig. 1. Comparison of psychomotor vigilance task performance impairment by ethanol, total sleep deprivation (A and C), and partial sleep deprivation (B
and D). (A and B) Individual impairment in 10% slowest reaction times (RTs; means; difference from baseline) after alcohol (diamonds) and sleep deprivation
(circles), ordered according to impairment after alcohol. Intraclass correlation coefficients (ICCs; two-way mixed effects model, absolute agreement) indicate
moderate agreement. Note that the degree of impairment did not vary due to differences in blood alcohol concentration [color-coded diamonds ranging
from orange (low concentration) to black (high concentration)]. (C and D) Significant Spearman correlations between the impairment (difference from
baseline) in mean speed under alcohol and after sleep deprivation (see also Table 1).
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from 20 ± 5% SEM (amygdala) to 26 ± 5% (cuneus), depending
on the brain region. In comparison, under identical control
conditions (placebo group), there were no significant differences
in any brain region (variation of 3 ± 3% across examined re-
gions). Details are displayed in Table 2. The increase in A1AR
availability showed large interindividual differences that were
not correlated with BAC (Fig. 4B).
The Biphasic Alcohol Effects Scale (BAES), which is a

measure of alcohol’s stimulating and sedating effects, showed
in the sedating subscale a significant correlation with the
treatment-dependent relative changes in the A1AR in several
brain regions (SI Appendix, Table S1). Exemplarily, the stria-
tum (left and right; r = −0.99, P = 0.0001) is depicted in Fig. 4C.
Importantly, the BAES did not show a correlation with BAC
(r = −0.05, P = 0.91).

Discussion
The present study shows that cognitive performance impair-
ments due to ethanol intake and sleep loss correlate strongly
across individuals, indicating the presence of an underlying trait
vulnerability. The present study also reveals that acute ethanol
administration is accompanied by a rapid increase in A1AR
availability in the human brain and that the subjective sedating
effects as assessed by the BAES correlate strongly with cerebral
A1AR availability. Given the previously observed up-regulation
of A1AR availability with extended time awake (28, 29), the
cerebral adenosine system might therefore represent a common
pathway for both ethanol and sleep deprivation effects on per-
formance. Behavioral studies have established a link between
both stressors, providing evidence for additive or even synergistic
detrimental effects on cognitive performance (30–33).

A B

Fig. 2. Time course of mean speed in the psychomotor vigilance task during (A) total sleep deprivation (TSD), after (B) repeated partial sleep deprivation
(PSD), and after recovery (REC) sleep. Based on performance impairment under alcohol, the subjects were divided into two subgroups (median split). Gray
vertical bars represent sleep periods. Error bars indicate SEM. *P < 0.05 for differences between subgroups (unpaired t tests).

Table 1. PVT performance impairment after total and partial sleep deprivation and alcohol administration

PVT parameter

TSD Ethanol Spearman PSD Ethanol Spearman

Mean Δ (SEM) Mean Δ (SEM) r value P value Mean Δ (SEM) Mean Δ (SEM) r value P value

Median RT, ms 36.92 (10.03) 31.96 (4.91) 0.567 0.0004 4.10 (4.73) 23.51 (8.10) 0.862 <0.0001
Mean speed, 1/s −0.64 (0.11) −0.47 (0.07) 0.620 <0.0001 −0.07 (0.10) −0.41 (0.13) 0.842 0.0002
10th percentile speed, 1/s −1.25 (0.23) −0.64 (0.10) 0.603 0.0001 −0.16 (0.14) −0.53 (0.16) 0.886 <0.0001
90th percentile speed, 1/s −0.29 (0.06) −0.32 (0.06) 0.614 <0.0001 0.05 (0.08) −0.27 (0.10) 0.833 0.0002
Lapses, no. 5.14 (1.29) 1.60 (0.48) 0.508 0.0018 1.43 (0.72) 2.43 (1.15) 0.281 0.5410
Mean RT, ms 29.99 (4.20) 33.08 (4.76) 0.659 <0.0001 4.89 (5.19) 24.00 (8.22) 0.846 0.0001
SD of RT, ms 19.70 (2.59) 14.99 (2.08) 0.742 <0.0001 6.14 (2.78) 10.12 (3.28) 0.574 0.0320
Mean 10% slowest RT, ms 74.73 (9.78) 65.58 (8.50) 0.662 <0.0001 17.00 (11.29) 42.49 (13.76) 0.666 0.0093
Mean 10% fastest RT, ms 8.47 (2.08) 12.97 (2.80) 0.462 0.0052 −1.80 (3.53) 9.72 (4.16) 0.846 0.0001

PSD, after four nights with time in bed restricted to 5 h; RT, reaction time; TSD, 35 h awake. Median RT and parameters of speed
include all RTs. Lapses are RTs ≥500 ms; other PVT parameters are based on RT excluding lapses. Mean Δ is the difference between
experimental condition (TSD, PSD, ethanol) and baseline at respective daytimes; 10th percentile refers to difference in slow response
speed, and 90th percentile to difference in fast response speed. Significant correlations are bold.
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The large interindividual variation in the susceptibility of cog-
nitive performance to acute and chronic sleep deprivation that we
found here substantiates previous reports (15, 34) and is consistent
with a genetic contribution (e.g., refs. 35 and 36). Large in-
terindividual variations have also been reported for the wakeful-
ness- and performance-promoting effects of caffeine (37), which is
known to act via adenosine receptor antagonism (38). Individual
differences in caffeine sensitivity have been linked to genetic
variations in the adenosine system (39, 40). In a recent study using
PET, we found that the degree of an individual’s performance
impairment after extended time awake was related to cerebral
A1AR availability (29). Taken together, the adenosine system
appears to be subject to individual variations that in turn con-
tribute to the differences in the vulnerability to sleep loss.
The increase in A1AR availability in humans after ethanol ex-

posure confirms previous reports of in vitro and in vivo experiments
in rodents. Autoradiography experiments in rats showed that
1.5 g/kg ethanol led to a 40% increase in A1AR availability after
only 15 min (23). A 35 to 55% increase in distribution volume
was measured 20 min after application of ethanol along with an
adenosine kinase inhibitor (25). Recent results frommice suggest that
sleep deprivation attenuates the sensitivity to alcohol via reducing
extracellular accumulation of adenosine in a long-lasting manner (41).
The magnitude of the 35% increase in cerebral A1AR availability
after alcohol infusion in the present study is comparable to a re-
spective decrease observed after four cups of espresso (42).
Caffeine has been reported to be an effective countermeasure

against performance impairment in the PVT during sleep depri-
vation, sleep inertia (43–45), as well as circadian misalignment
(43–45). Although numerous studies have investigated caffeine as
an antidote for alcohol-related performance decrements, out-
comes remain equivocal (43–47). Moreover, there are differences
in their neurochemical action, as the antagonist caffeine blocks
receptor binding whereas ethanol rapidly increases A1AR avail-
ability through a mechanism that has not been clarified so far. It is
possible that alcohol slows down the turnover of cell-surface re-
ceptors and increases receptor trafficking to the cell surface.

Mechanisms could be an enhancement of an intracellular receptor
pool that involves receptor assembly and maturation or sensiti-
zation (at least in the basal ganglia) by A1 adenosine–D1 dopa-
mine receptor heteromeric interaction (48, 49). Nonetheless, the
present behavioral and PET studies indicate that alcohol and
caffeine may represent at least in part antagonistic drugs, as they
appear to interact with a common underlying pathway.
In conclusion, these findings support the framework that there

are individual trait characteristics for being either vulnerable or
resilient to both alcohol and to sleep deprivation. Based on pre-
vious studies on the effects of extended wakefulness (29) and the
present findings on ethanol-induced changes in cerebral A1AR
availability, we provide evidence that both alcohol and sleep
deprivation effects are mediated—at least partly—via the adeno-
sine system of the brain. Important related research questions that
need to be addressed to corroborate our conclusion are (i)
whether individual changes in A1AR availability after sleep dep-
rivation correlate with those under ethanol influence, (ii) whether
chronic sleep restriction induces alterations of A1AR availability
in the human brain, and (iii) whether chronic sleep restriction
modulates the effect of ethanol on neurobehavioral performance.
Targeting the adenosine system might therefore help identify new
countermeasures against compromised performance induced by
both sleep deprivation and alcohol. Possible countermeasures
could include individualized fatigue management systems and
training. Furthermore, assessing sensitivity to alcohol might be
cautiously used as a means to identify/protect individuals who are at
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greatest risk to be impaired by sleep loss, for example in safety-
critical environments (e.g., transportation, healthcare, and the mil-
itary) that include extended duration shifts or night work. Especially
in situations of high workload and stress, sleep loss can result from
sleep disturbances (50) or from trading sleep for additional
work hours; in such situations alcohol consumption is increased
(51), and thus insight into putative cumulative effects of sleep loss,
stress, and alcohol is highly relevant. A recent model that predicts
cognitive performance after sleep loss based on putative changes of
adenosine and the A1AR (52) could be extended to the influence of
ethanol on performance and be evaluated accordingly. Finally, our
studies are important from a public health education point of view.
Reports indicate that young drivers believe that driving drowsy is
less of a serious problem than driving under the influence of alcohol
(53). Our finding of a shared physiological basis raises awareness for
the still underestimated danger of driving while sleep-deprived.

Materials and Methods
Alcohol, Sleep Deprivation, and Performance (Studies 1 and 2).
Participants. The studies were approved by the Ethics Committee of the North
Rhine Medical Board. Written informed consent was obtained from all
participants. Volunteers’ physical and psychological health was confirmed
with questionnaires and medical examination. They reported normal sleep–
wake rhythmicity and conducted no shift work. From a total of 63 healthy
volunteers, datasets of 35 participants in study 1 (mean age ± SD 26 ± 5 y, 20
men/15 women) and 14 participants in study 2 (mean age ± SD 27 ± 4 y, 14
men) were included in the present analysis; 14 participants (12 from study 1,
2 from study 2) were excluded (see below).
Study design. The two studies spanned 12 d and 11 nights andwere both carried
out in the sleep laboratory of the Institute of Aerospace Medicine (German
Aerospace Center). Eight participants at a time underwent the experiments,
and they were constantly attended by at least two study staff members.

Study 1. Total sleep deprivation. After an adaptation night and two baseline
nights (sleep opportunity: 2300 to 0700 hours), participants underwent three
experimental conditions administered in a balanced cross-over design. The
experimental conditions were (i) 38-h total sleep deprivation, (ii) one night
of partial sleep deprivation (i.e., sleep opportunity restricted to 0000 to 0400
hours), and (iii) alcohol administration at 1600 hours followed by partial
sleep deprivation (sleep opportunity: 0000 to 0400 hours). The experimental
conditions were followed each by two nights of recovery sleep (all recovery
nights 2300 to 0700 hours, except for the first recovery night after total
sleep deprivation 2100 to 0700 hours).

Study 2. Partial sleep deprivation. Methodological details of the study have
been published elsewhere (13, 54). In brief, after an adaptation night and
two baseline nights (sleep opportunity: 2300 to 0700 hours), participants
underwent 1 d with hypoxia exposure during daytime cognitive testing,
1 d with alcohol administration at 1030 hours (n = 12) or 1600 hours (n = 2),
one recovery day/night followed by four nights with restricted sleep op-
portunities (0000 to 0500 hours), and two recovery nights (sleep opportu-
nity: 2300 to 0700 hours) in a sequential design.
Alcohol administration. In studies 1 and 2, a drink of vodka whose amount was
calculated according to sex, weight, height, and age was consumed within
5 min. Participants’ BAC was based on calibrated breath alcohol analyzer
(Alcotest; Draeger) results immediately before the cognitive testing session
at 1800 or 1200 hours. A BAC of more than 0.06% immediately before the
respective cognitive testing session was chosen as minimum for inclusion in
the analyses. Data of 14 participants (i.e., 12 in study 1, 2 in study 2) had to
be excluded due to physical problems like nausea or vomiting or because
they did not reach this threshold due to inability to drink the whole amount
of vodka. In study 1, the dataset included 35 participants with a mean BAC
of 0.074 ± 0.001% SD (minimum 0.064%, maximum 0.095%, 25% quantile
0.065%, 75% quantile 0.078%). In study 2, the 14 participants included in
the present analysis had a mean BAC of 0.076 ± 0.009% SD (minimum
0.060%, maximum 0.094%, 25% quantile 0.069%, 75% quantile 0.080%).
Performance measurements. Sustained attention was measured with a 10-min
PVT (16) at 3-h intervals during baseline, experimental, and recovery days.
Apart from the cognitive testing session, participants engaged in non-
vigorous activities such as reading and watching TV.
Statistics. Impairment of cognitive performance in the experimental conditions
was assessed by calculating the difference in the PVT measures (e.g., mean
speed, etc.) from the respective values during the first baseline day. Spearman
rank correlations were calculated to compare performance impairments due to
sleep deprivation/restriction with those due to alcohol intake.

Based on participants’ impairment in mean speed after alcohol exposure a
median split was performed. Unpaired t tests compared themean speed of the
two groups during baseline, sleep deprivation, sleep restriction, and recovery.

Alcohol PET Study (Study 3).
Participants. The study was approved by the Ethics Committee of the Medical
Faculty of the University of Duesseldorf and the German Federal Office for
Radiation Protection. The study was performed at the PET laboratory of the
Institute of Neuroscience and Medicine (Forschungszentrum Jülich). Written
informed consent was obtained from all participants. Physical and psycho-
logical health was confirmed by medical examination and questionnaires
before 10 healthy male volunteers were assigned to the experimental (n = 7;
mean age ± SD 31 ± 9 y) or control group (n = 3; mean age ± SD 31 ± 12 y)
(nonrandomized, single-blinded).
PET. Three-dimensional data acquisition took place on an ECAT EXACT HR+
scanner (Siemens-CTI). Scan duration was 140 min with radiotracer injection as
bolus followed by a constant infusion with a kbol (amount of bolus equaling
an infusion of a certain length) value of 63 min. Realignment, coregistration,
segmentation, and normalization of PET data and corresponding MRI (ac-
quired on a 3T Siemens Magnetom Trio with MPRAGE sequence) were done
with PMOD (version 3.305; PMOD Group). Repeated arterialized venous blood
sampling was scheduled at 2, 5, and 10 min, and every 10 min until 80 min and
every 5 min subsequently. The total distribution volume VT in the equilibrium
(between 50 and 140 min) is represented by the formula VT = TAC/Cp, with
TAC being the tissue activity concentration and Cp the plasma activity (28).

More details concerning the PET experiment are provided in SI Appendix.
Alcohol administration/subjective effects. From minute 80 to 110 of the radio-
tracer infusion, 40 g of ethanol in 1 L saline or solely 1 L saline solution as
placebowas infused. To assess the subjective effects of the infusion, we used a
German version of the BAES (55) with a slightly modified instruction that did
not imply that alcohol was consumed. Subjects were asked to rate how they
felt right before the ethanol infusion and at the end of the PET scan.
Statistics. The alcohol response in the PET regional A1AR distribution volumes
(VT; mL/mL) was quantified in reference to (i) baseline (pre alcohol infusion)
and (ii) postinfusion with a t test for pairwise comparisons with a Bonferroni-
corrected significance level. Spearman rank correlation was used to evaluate
associations between adenosine receptor availability and (i) BAC and (ii) BAES.
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Table 2. Relative regional changes of cerebral A1AR availability
after ethanol or placebo administration

Brain region

Relative increase in A1AR availability, %

Ethanol group Control group

Mean relative
Δ (SEM) P value

Mean relative
Δ (SEM) P value

Supplementary
motor area

24 (5) 0.001 6 (2) 0.047

Frontal inferior 23 (5) 0.001 3 (2) 0.269
Insula 23 (5) 0.002 0 (3) 0.905
Cingulum anterior 25 (5) 0.001 2 (2) 0.434
Hippocampus 20 (4) 0.002 5 (4) 0.287
Amygdala 20 (5) 0.002 5 (6) 0.431
Cuneus 26 (5) 0.001 8 (3) 0.063
Occipital 23 (5) 0.002 3 (2) 0.124
Postcentral 24 (5) 0.001 3 (2) 0.288
Striatum 19 (5) 0.002 1 (3) 0.775
Pallidum 25 (6) 0.003 1 (3) 0.742
Thalamus 22 (5) 0.003 2 (2) 0.440
Temporal 23 (5) 0.002 3 (2) 0.185
Parietal 22 (5) 0.001 3 (2) 0.261

Significant P values after Bonferroni correction (0.05/14 = 0.0035) are
in bold. Mean relative Δ is ((postinfusion − baseline)/baseline).
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